
Signatures of Strangeness in Neutron Star Merger Remnants

Krishna Prakash Nunna1, Sarmistha Banik1 , and Debarati Chatterjee2
1 Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad—500078, India; sarmistha.banik@hyderabad.bits-pilani.ac.in

2 Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune—411007, India
Received 2020 March 24; revised 2020 April 28; accepted 2020 April 29; published 2020 June 17

Abstract

Neutron star (NS) mergers provide us with information rich in physics using multimessenger astrophysical
observations. One of the probable remnants of such a merger is a differentially rotating hot hypermassive NS. The
stability of the merger remnant crucially depends on the underlying equation of state and thus provides a method to
probe the nature of dense matter in NSs. In this work, we search for possible signatures of strangeness-containing
matter in NS interiors on the secular stability of the merger remnant. We also use recently proposed methods to
make a rough estimate of the collapse time of the merger remnant and the threshold mass above which the merger
promptly collapses to a black hole.

Unified Astronomy Thesaurus concepts: Neutron star cores (1107); Neutron stars (1108); Relativistic stars (1392)

1. Introduction

Neutron stars (NSs) are compact stellar remnants left behind
at the end point of the evolution of massive stars that end in
supernova explosions. Typically having masses of 1–2 solar
masses (Msolar) enclosed within a compact radius of only about
10 km, NSs span a wide range of densities. The interior
composition of NSs is still a mystery, as the nature of cold and
dense matter beyond saturation density is not accessible to
terrestrial experiments, and one must resort to theoretical
models for their description. While nuclear experiments
provide clues about the nature of matter close to the nuclear
matter saturation density n0, heavy-ion collisions provide
information about hot and dense matter at a few times n0.
Although such experiments can help to constrain parameters of
theoretical models, they must be extrapolated to the regime of
low temperatures, higher densities, and finite neutron–proton
asymmetry to describe NS matter.

Strangeness is well-established in heavy-ion experiments,
where strange particles (hyperons, kaons) have been observed
to appear for brief intervals of time. The high densities in NS
cores are believed to favor the appearance of strange particles
(hyperons, condensates of mesons, or even deconfined quarks),
which could then exist as stable constituents due to chemical
equilibrium via nonleptonic weak interaction processes. The
appearance of such additional degrees of freedom should result
in reduction of the pressure and consequently a softer equation
of state (EoS) or pressure–density relationship.

The microscopic EoS of dense matter is one of the key
ingredients that govern global astrophysical NS observables,
such as mass, radii, or moments of inertia. Thus NS
observations can help to constrain their internal structure and
composition and hence the EoS of dense matter. For example,
solving equations of hydrostatic equilibrium, one can obtain the
mass and radius of a NS given its EoS. A softer EoS implies a
lower pressure at a given density and therefore result in a lower
NS mass. This would however be incompatible with the recent
observation of large NS masses ∼2Msolar (Demorest et al.
2010; Antoniadis et al. 2013). There have been many
suggestions in the recent past to solve this apparent dilemma
(Dexheimer & Schramm 2008; Bednarek et al. 2012; Weissen-
born et al. 2012a, 2012b; Yamamoto et al. 2013; Char &

Banik 2014; Lopes & Menezes 2014; Maslov et al. 2015;
Oertel et al. 2015; Chatterjee & Vidaña 2016), which revealed
the unforeseen role played by interactions among strange
particles. The “hyperon puzzle” has been addressed in alternate
gravity with geometric terms (Astashenok et al. 2014). In fact,
the mass–radius relation of NSs has been discussed consistently
in the extended theories of gravity as f (R) gravity (Astashenok
et al. 2015; Capozziello et al. 2016; Feola et al. 2020).
Apart from NS masses, there are several other observational

signatures of strange matter in NSs. The recently launched
Neutron star Interior Composition Explorer mission aims to
measure radii with up to 5% precision in the near future, and
has already started providing interesting constraints on the
dense matter EoS (Raajimakers et al. 2019). Estimates of NS
radii have also been obtained in the recent past from the double
pulsar J0737-3039 system (Raithel et al. 2016), which is well
constrained from the measurement of its post-Keplerian
parameters.
One of the most promising tools that has emerged in the

recent past is that of oscillation modes in NSs that emit
gravitational waves (GWs). Unlike electromagnetic signals that
are related to surface phenomena, GWs can directly probe the
interior composition of NSs. Several studies have shown
(Chatterjee & Bandyopadhyay 2007, 2008, 2009, 2016) that
unstable modes such as r-modes and w-modes contain
signatures of strange matter in NS cores that can be extracted
from the GW signal when detected. Recently, the detection of
GWs from the NS binary merger GW170817 has opened up a
new window to the universe. Tidal deformations of the NSs in
the binary have been used to provide constraints on the NS
radius, and consequently on the dense matter EoS (Abbott et al.
2017a).
The outcome of the NS merger in GW170817 is highly

debated, given the uncertainties associated with the detection of
the postmerger GWs. Postmerger searches by the LIGO–
VIRGO Collaboration did not find evidence for GWs from the
remnant (Abbott et al. 2017b, 2019a, 2019b). One possible
outcome is a differentially rotating hot hypermassive NS
(HMNS) (Baiotti & Rezzolla 2017). The stability of the
conjectured hypermassive merger remnant is extremely inter-
esting as it depends crucially on the dense matter EoS as well
as the differential rotation velocity profile. Several works in the
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literature have explored the equilibrium solutions of differen-
tially rotating NSs (Baumgarte et al. 2000; Gondek-Rosinska
et al. 2017).

Recently Bozzola et al. (2018) and Weih et al. (2018) have
performed studies of the secular instability in HMNSs and
proposed a “quasi-universal” relation between the maximum
mass of the remnant and its scaled angular momentum
independent of the EoS. The EoSs considered for these works
were polytropes, zero-temperature hadronic EoSs, or strange
star EoSs. Several recent investigations have also probed the
threshold mass beyond which the merger remnant collapses to
a black hole and the collapse time. However, their estimates
and methodology vary widely (Radice et al. 2018; Gill et al.
2019; Köppel et al. 2019; Lucca & Sagunski 2019). Further,
many of the assumptions that go into such calculations (e.g.,
slow rotation, spindown via electromagnetic radiation only,
consistent treatment of thermal contribution in the EoS) must
be carefully reconsidered.

In this work, we investigate the role of strangeness in the NS
core on the stability of the HMNS merger remnant. We
consider only the most realistic solutions of differentially
rotating stars that belong to the class “A” (Ansorg et al. 2009),
which always have a mass-shedding limit. The signature of the
presence of strangeness-containing matter such hyperons and
antikaon condensates on the secular instability is investigated,
as well as the universality of the proposed relations. We
consider differential rotation and include thermal effects, which
are crucial properties of a NS merger remnant. We also
estimate the threshold mass of the merger remnant for prompt
collapse to a black hole and the corresponding collapse time.

The outline of the paper is as follows. In Section 2, we
present the formalism, namely the microscopic description and
the different EoSs employed in this investigation. We then
discuss the numerical scheme employed to obtain the
macroscopic NS structure. In Section 3, we obtain the main
results of this study. We provide the details of the method used
to determine the onset of the secular instability, investigation of
the universal relations and an estimation of the collapse time.
Section 4 we discuss the main findings of this work and the
limitations and scope for further study.

2. Formalism

2.1. EoSs

One of the main goals of this work is to find signatures of
strangeness-containing constituents of the NS interior (such as
hyperons or antikaon condensates) on the stability of the NS
merger remnant. Further, temperatures of 50–100MeV can be
reached in HMNS merger remnants, implying that thermal
effects on the EoS cannot be neglected. This may have a
significant effect on the composition, favoring the production
of hyperons or mesons. A number of different approaches are
followed to construct the EoS of cold and ultradense NS matter,
as the interaction cannot be described from first principle. In
this work, we consider zero-temperature as well as finite-
temperature EoSs based on the phenomenological relativistic
mean field (RMF) with density-dependent coefficients. It is
based on field-theoretical calculations where the constituent
baryons interact via meson exchange and the model parameters
are fitted to properties of finite nuclei to obtain the bulk
properties of nuclear matter. Besides, the meson–baryon
couplings are made density dependent, to address the high

density behavior of the EoS. The EoSs used in this work agree
with the bounds on the symmetry energy at nuclear density and
its derivative with respect to density, set by nuclear experi-
ments. These are unified EoSs in the sense that the same RMF
nucleon–nucleon interaction is used in the subsaturation
density as well as at high density. Also, they satisfy the
2Msolar constraint (Demorest et al. 2010; Antoniadis et al.
2013). Currently, only a few EoSs are available which treat
temperature, baryon number density, and electron fraction in a
consistent way. These are some of the unified EoSs at a finite
temperature that are used for numerical relativity simulations
for binary NS mergers.

2.1.1. Zero-temperature EoSs

We consider the following different compositions for the
NS core:

(i) pure nucleonic matter (DD2);
(ii) matter with Λ-hyperons (BHBΛf);
(iii) matter with antikaon condensates (DD2-K−).

The EoSs used in this work all satisfy the 2Msolar constraint
(Demorest et al. 2010; Antoniadis et al. 2013). We briefly
recapitulate the EoSs below.

(i) Pure nucleonic matter consists of an ensemble of nuclei
and interacting nucleons in a nuclear statistical equili-
brium. Uniform nuclear matter contains neutrons, pro-
tons, and leptons at large densities and is described by an
RMF model. Nuclei, on the other hand, are treated as
separate particle species, and their masses are taken from
nuclear structure calculations which are based on the
same nuclear Lagrangian density. For a given number
density and temperature the Helmholtz free energy is
minimized. Also, within the model the RMF interactions
of the nucleons are coupled to the nuclei via chemical
equilibrium (Hempel & Schaffner-Bielich 2010). The
EoS is denoted as DD2. The thermodynamically
consistent description with excluded volume corrections
takes care of the transition of the nonuniform nuclear
matter phase from nuclei to uniform nuclear matter.
Though this guarantees a smooth transition between the
nonuniform and uniform parts of the EoS, it may have a
4% uncertainty in the radius calculation, as was
emphasized by Fortin et al. (2016). But the determination
of maximum mass is not affected by the core–crust
matching.

(ii) The NS core density may exceed a few times n0. At high
density, major constituents of matter may have strange
particles like Λ hyperons and/or K− condensates in
addition to protons, neutrons, and leptons. The strange
particles are never found to coexist with the nuclei as they
appear only at high densities. Therefore, we simply use
the nonuniform part of the DD2 EoS (Hempel &
Schaffner-Bielich 2010) following the standard prescrip-
tion of minimization of free energy, as developed by one
of our authors(Banik et al. 2014). In the presence of
hyperon–hyperon interaction via f mesons, the EoS with
Λ-hyperons is represented by BHBΛf (Banik et al.
2014).

(iii) The antikaons are treated on the same footing as the
nucleons following Pons et al. (2000); here the antikaon–
baryon couplings are density independent. The
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interactions between the constituents of such matter are
poorly understood, largely due to the lack of experimental
data. We consider an optical potential depth of
−140MeV for the K− nucleon interaction. This EoS is
represented by DD2-K− (Batra et al. 2018).

2.1.2. Thermal Effects

Newly born protoneutron stars (PNSs) at a finite temper-
ature, as well as hot merger remnants, have been studied
elaborately in the literature (Abbott et al. 2017b). One may
consider either isothermal or isentropic configurations. Isen-
tropic configurations are quantified by the value of entropy per
baryon s in units of the Boltzmann constant kB. We have seen
for a fixed entropy per baryon of s=2kB that a NS can shoot a
central temperature of 50–100MeV (Batra et al. 2018).
Therefore, it is important to study the role of thermal effects
on the stability of the NS. In this study, therefore, we compare
two cases:

(i) zero-temperature (s= 0) EoSs as elaborated in
Section 2.1.1;

(ii) the same EoSs with thermal effects included (s=2kB).

2.2. Numerical Scheme

Differential rotation may support hot HMNS merger
remnants against collapse. In order to study the stability of
the merger remnants, one must obtain equilibrium NS
configurations for the EoSs discussed above (Section 2.1).
There are already existing numerical schemes that compute
equilibrium solutions of uniform and differentially rotating cold
NSs, see, e.g., the numerical library LORENE3. Within this
scheme, calculations are performed solving general relativistic
equations of the hydrostatic equilibrium of rotating, axially
symmetric stars. The first attempts toward equilibrium models
including thermal effects in uniformly and differentially
rotating NSs were introduced by Goussard et al. (1997, 1998)
for realistic EoSs. It was shown that for finite temperature, the
integrability of the equation of stationary motion requires an
isentropic (constant entropy) or isothermal (constant temper-
ature) solution. Rapidly (uniformly) rotating hot NS config-
urations were also computed within this framework in Marques
et al. (2017) for realistic EoSs including hyperons.

In this study we compute equilibrium solutions of hot
(isentropic) differentially rotating NSs within the same
numerical scheme. Equilibrium equations are solved with
Einstein equations, with the assumptions of stationarity,
axisymmetry and circularity (the absence of meridional
convective currents). An EoS is required to close the system
of equations. For a finite temperature, the EoS depends on
temperature as well as on the particle number densities. The
partial differential Einstein equations are solved using a
multidomain spectral method (Bonazzola et al. 1993). An
algorithm to construct a rotating equilibrium model numerically
in a self-consistent-field method is explicitly described in
Bonazzola et al. (1993). We briefly describe it below.

The Schwarzschild metric for a static star gives the following
line element:

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

( )

q q f

=- + -

+ +

mn
m n n

-
g dx dx e dt

m r

r
dr

r d r d

1
2

sin , 1

r2 2
1

2

2 2 2 2 2

where ν is a metric potential and m(r) is the gravitational mass
inside a sphere of radius r. In hydrostatic equilibrium, the
structure of a spherically symmetric, static relativistic NS is
determined by the Tolman–Oppenheimer–Volkoff (TOV)
equations, basically a reformulated Einstein’s equation using
Equation (1). Given a barotropic EoS (in the form of ò=ò(nb)
and P=P(nb)), the stellar structure can be computed by
numerically integrating the TOV equations with suitable
boundary conditions.
A rapidly rotating star can be modeled in general relativity

within a 3+1D space plus time decomposition of the Einstein
equation (Bonazzola et al. 1993), where spacetime is sliced by
a family of space-like hypersurfaces Σt, labeled by the time
coordinate t. The line element can be written as

( )( ) ( )g b b= - + + +ds N dt dx dt dx dt . 2ij
i i j j2 2 2

Here x i is a coordinate on the hyperspace, N is the
proportionality coefficient of two collinear vectors t and n
in = -n N t, called a lapse function, β i is the shift vector
and γij the 3-metric on each hypersurface (Bonazzola et al.
1993). Since each hypersurface Σt is assumed to be space-like,
the components of γ are given in terms of the components of
the normal via g = +mn mn m ng n n .
Spacetime can be stationary and axisymmetric at the same

time which implies the existence a of time-like Killing vector
field ( )z = ¶t and a space-like Killing field x = ¶f, respec-
tively. These two commuting Killing vectors imply that we can
choose spherical polar coordinates ( =x t0 , x1=r, x2=f,
x3=θ). Furthermore, for an asymptotically flat spacetime
β r=βf=0, g g= =f qf 0r . Hence, the line element for a
rotating star in quasi-isotropic coordinates, which additionally
gives γrθ=0, is given by

( )

( ) ( )

q

q f w

=- + +

+ -
ab

a bg dx dx N dt A dr r d

B r d dtsin , 3

2 2 2 2 2 2

2 2 2 2

where N, A, B and ω are four functions of (r, θ). Four Einstein
equations for the rotating star involving these four metric
potentials reduce to partial differential equations with the
matter source terms as well as the gravitational field on their
right-hand side.
For a perfect fluid, the stress–energy tensor is given by

( )= + +mn m n mnT P u u Pg , where ò is energy density, P is
pressure, both in the fluid frame, and uμ is the fluid 4-velocity.
Due to the circularity hypothesis, the fluid 4-velocity with
respect to zero angular momentum observer (ZAMO) can be
written as ( )= G +u n U , where n is the 4-velocity of the
ZAMO, ( )G = - -U1 2 1 2, and U is the Lorentz factor and
3-velocity of the fluid with respect to ZAMO, respectively. The
equations of motion follow from the energy–momentum
conservation law,  =m

mnT 0, and the baryon number con-
servation law ( ) =m mn u 0.b The first integral of motion is3 www.lorene.obspm.fr
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expressed as

( ) ( ) ( )u + - G + W W =H Fln 0, 4

where ≔H ln h

mB
, mB being the mean baryon mass:

 ´m 1.66 10B
27 kg. For rigid rotation, Ω= constant and

Equation (4) becomes + - GH Nln ln = constant. In the case
of differential rotation, W ¹ 0 and the first integral of motion
is given by

( ) ( )òn+ - G + W W =
W

¢ ¢H F dln constant. 5
0

For hot stars, the equation of fluid motion is given by

( ) ( )n¶ + - G = ¶ - ¶W
-

H
Te

m
s Fln . 6i

H

i i
B

B

This numerical method gives a unique solution with the input
parameters (Hc, Ω) and a fixed EoS for a rotation law. In order
to investigate the role of differential rotation, we employed the
usual Komatsu Eriguchi Hachisu (KEH; Komatsu et al. 1989)
or j-constant rotation law defined by the velocity profile:

( ) ( ) ( )W = W - WF R , 7c0
2

where Ωc is the central angular frequency and R0 is a free
parameter with dimensions of length that determines the degree
of differential rotation (Baumgarte et al. 2000). We consider
the dimensionless parameter a=Re/R0, where Re is the
equatorial NS radius. Thus the limit of uniform rotation is
obtained when a 0 and increasing a denotes increasing
degree of differential rotation. The advantage of the j-constant
law is that it approximately reproduces the rotation profile
obtained in 2D simulations, and is a simple law, with the
minimum number of free parameters. Although the j-constant
rotation law is the most widely used, alternative rotation laws
have been discussed in the literature (Uryu et al. 2017; Bozzola
et al. 2018) and should be investigated. However, such a task is

beyond the scope of this paper, and we leave it for a future
study. It should be noted that the previously obtained stationary
state equilibrium solutions for hot differentially rotating PNSs
were also investigated by Goussard et al. (1997) using the j-
constant rotation law.

3. Results

The EoSs discussed in Section 2.1 and the corresponding
mass–density relations for the nonrotating as well as the mass-
shedding cases are shown in Figure 1. In the left panel pressure
P (in MeV fm−3) is plotted against the baryon number density
nb (in fm−3) for (i) pure nucleonic matter, (ii) hyperons, and
(iii) antikaon condensates denoted by DD2, BHBΛf, and
DD2-K− respectively. The DD2 EoS is the stiffest of the three,
which softens with the advent of extra degrees of freedom in
the form of strange particles, K−condensates, and Λ-hyperons.
Again, the EoSs are stiffer for stars with finite entropy per
baryon compared to the cold ones for all the three cases, the
difference arising from the thermal contribution to the pressure.
We use solid lines for T=0 and dashed ones for stars at
s=2kB.
Solving the TOV equations of a relativistic hydrostatic

equilibrium, we obtain the macroscopic structure properties
(mass and radius) of the NS. The solutions for the static star
corresponding to the different EoSs are plotted in the lower-
right panel of Figure 1. As expected, the strange EoS yields a
lower maximum mass star compared to that of the DD2 EoS. A
stiffer EoS can support larger mass. However, all the sets of
EoSs yield maximum mass above the observational 2Msolar

limit (Demorest et al. 2010; Antoniadis et al. 2013).
Let us follow a NS with similar compositions. Between a

cold (T= 0) and hot (s=2kB) EoS, the latter being stiffer can
support a static star of larger mass, compared to its cold
counterpart. However, this trend is reversed for the mass-
shedding sequences. We plot the mass of sequences of
uniformly rotating stars at the Keplerian limit in the upper
right panel of Figure 1. The maximum masses for the Keplerian

Figure 1. EoSs (left panel) and corresponding gravitational mass–baryon density sequences (static and uniformly rotating Kepler) are plotted in the right panels. Solid
lines are used for cold stars (T = 0), while dashed lines are used for finite entropy per baryon s=2kB. See the text for more details.
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sequences increase by ∼20%–23% more than their static ones
for the cold stars, whereas for the stars with s=2kB the
differences are ∼12%–15%. The values of maximum mass and
other relevant properties are given in Table 1. The thermal
pressure contribution can sustain a heavier NS. But it is evident
from the table that the Keplerian frequency for a hot NS is not
as high as that of the cold star. Hence the difference in
maximum mass is lower for hotter stars.

3.1. Onset of Secular Instability

The onset of the secular instability is determined by the
“turning point” (TP) criterion, i.e., the maximum of the
gravitational masses as a function of central density (Friedman
et al. 1988). The TP criterion for secular stability in hot rigidly
rotating stars was obtained (Goussard et al. 1997; Marques
et al. 2017) for isentropic (or isothermal) solutions. Consider-
ing sequences of differentially rotating equilibrium models
using the j-constant law, it was shown that a stability criterion
for differentially rotating NSs exists similar to the one for their
uniformly rotating counterparts (Bozzola et al. 2018; Weih
et al. 2018). The onset of dynamical instability for differentially
rotating stars is marked by the neutral-stability line (where the
eigenfrequency of the fundamental mode of oscillation
vanishes). The neutral-stability and TP curves coincide for
nonrotating NSs, but their difference grows with increasing
angular momentum. Along a sequence of constant angular
momentum, dynamical instability sets in for central rest-mass
densities slightly lower than that of secular instability at the TP.

In order to investigate the effect of the NS core composition
on the stability of the NS merger remnant, one must construct
relativistic equilibrium sequences and calculate the extra mass
supported by the rotating star compared to the static star for the
EoSs considered. However, it has already been shown that
sequences at constant rotation frequency do not allow one to
distinguish between stable and unstable solutions (Marques
et al. 2017), but rather sequences of constant angular
momentum must be compared. We therefore generate equili-
brium sequences at constant angular momentum for a given
degree of differential rotation a.

In Figure 2, we display gravitational mass MG (in solar
masses) as a function of central energy density ρc (in units of
ρnucc

2, where r = ´ -1.66 10 kg mnuc
17 3) for the nucleonic

DD2 EoS. The nonrotating limit is denoted by the red “static”
curves while the mass-shedding limit is denoted by black

“kepler” curves for uniformly rotating NSs. Also plotted (in
color) are constant angular momentum sequences (labeled by
their angular momentum values “J”) for a given degree of
differential rotation (a=0.2). In order to study the thermal
effects, different values of entropy are considered, T=0 in the
left panel and s=2kB in the right panel.
In Figure 3, we show the static and mass-shedding limit for

uniformly rotating equilibrium sequences for the BHBΛf EoS.
Constant angular momentum sequences for the differential
rotation parameter a=0.2 are also included in between the
static and "kepler" sequences. The left panel displays the zero-
temperature case while the right panel includes thermal effects
(s=2kB). As before, the different parameters are summarized
in Table 2.
In Tables 1–3, we study the TP criterion, considering DD2,

BHBΛf, or DD2-K− EoSs for s=0 and s=2kB, respec-
tively. The columns represent, respectively, the angular
momentum J (in GM csolar

2 ), central energy density ρc (in
ρnucc

2), gravitational mass MG (in Msolar), central frequency fc
in hertz, ratio of polar and equatorial radii rp/re, ratio of central
and equatorial angular frequencies Ωc/Ωe, circumferential
radius Rcirc (in kilometers) and the ratio of kinetic to
gravitational energy T/W.

3.2. Universal Relations

In this work, we investigate whether the presence of
strangeness affects the universality of the relations proposed
recently (Bozzola et al. 2018; Weih et al. 2018). In Figure 4,
the maximum or TP masses of differentially rotating sequences
M drmax, for a given degree of differential rotation (a=0.2)
normalized to the corresponding TOV mass MTOV is plotted as
a function of normalized dimensionless angular momentum
j jmax,0 for the different EoSs discussed in Section 2.1. Here
=j J M2 while jmax,0 is the maximum value of j at the mass-

shedding limit for a uniformly rotating NS. It is evident from
the figure that thermal effects spoil the universality of the
relations. This is interesting because the HMNS merger
remnant is hot (temperature ∼80 MeV) and hence thermal
effects cannot be ignored. However we find that the behavior of
the cold and hot EoSs individually do not vary qualitatively. In
both cases, for differential rotation a=0.2, the curves are
independent of the different EoSs considered in this work. So
we fit the curves for the cold and hot EoSs with a simple

Table 1
Turning Points for Stars Rotating Differentially (a=0.2) for a Zero-temperature DD2 EoS

DD2, T = 0 (s=2kB)

J ρc MG fc rp/re Rcirc T/W

7.36(5.39) 9.86(10.11) 3.08(2.86) 1820.78(1532.18) 0.48(0.60) 16.51(16.12) 0.167(0.119)
4.38 10.66(9.91) 2.72(2.74) 1510.12(1387.25) 0.74(0.70) 13.39(14.97) 0.095(0.093)
3.68 10.88(10.32) 2.64(2.66) 1367.54(1272.82) 0.79(0.76) 12.29(14.30) 0.075(0.074)
3.33 10.88(10.53) 2.61(2.62) 1278.70(1191.50) 0.82(0.80) 12.85(13.99) 0.065(0.063)
2.94 11.09(10.53) 2.57(2.58) 1176.64(1101.74) 0.85(0.82) 12.64(13.79) 0.054(0.053)
2.33 11.32(10.75) 2.51(2.53) 983.05(925.88) 0.89(0.88) 12.37(13.42) 0.036(0.036)
1.54 11.77(10.97) 2.46(2.47) 693.18(652.35) 0.95(0.94) 12.0(13.07) 0.017(0.017)

5.91(4.82) 10.05(10.11) 2.90(2.79) 1537.86(1354.41) 0.68(0.58) 13.74(16.92) 0.13(0.10)
0(0) 11.77(11.43) 2.41(2.42) 0(0) 1(1) 11.86(12.72) 0(0)

Note. The values in parentheses are for s=2kB. Among them, the topmost row is for stars spinning at the Kepler frequency. The last two rows are for a uniformly
rotating star at Keplerian frequency and for a static star, respectively. (See the text for details.)
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Figure 2. Equilibrium sequences for nucleonic EoS for nonrotating (red “static” curve) and mass-shedding or “kepler” limits of uniformly rotating NSs (black curve)
and differentially rotating NSs at the degree of differential rotation a=0.2 (dark-green curve). Also plotted (in color) are constant angular momentum sequences
(labeled by their “J” values) for a=0.2. The left panel is for T=0, the right panel is for entropy per baryon s=2kB. The black dots denote the TPs.

Figure 3. Same as Figure 2, but for BHB fL EoS.

Table 2
Turning Points for the Zero-temperature BHBΛf EoS

BHBΛf, T = 0 (s=2kB)

J rc MG fc rp/re Rcirc T/W

5.02(3.82) 10.24(11.08) 2.63(2.48) 1583.14(1297.45) 0.51(0.54) 16.67(17.48) 0.143(0.103)
3.19 11.72(11.08) 2.38(2.40) 1395.82(1303.96) 0.73(0.69) 13.29(14.95) 0.087(0.832)
2.67 11.92(11.36) 2.31(2.33) 1272.70(1192.95) 0.79(0.76) 12.85(14.21) 0.069(0.066)
2.36 11.63(11.66) 2.27(2.29) 1174.38(1111.55) 0.82(0.80) 12.63(13.81) 0.057(0.055)
1.84 12.22(11.66) 2.21(2.23) 988.34(927.662) 0.88(0.86) 12.26(13.37) 0.039(0.037)
1.20 12.53(11.95) 2.15(2.18) 698.29(656.40) 0.94(0.93) 11.89(12.91) 0.019(0.017)

4.28(3.44) 10.24(11.10) 2.52(2.43) 1413.10(1277.04) 0.56(0.58) 15.93(16.88) 0.122(0.091)
0(0) 12.84(12.26) 2.10(2.13) 0(0) 1(1) 11.52(12.5) 0(0)

Note. The values in parentheses are for s=2kB (see the text for details).
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polynomial function of the form

⎛
⎝⎜
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⎠⎟( ) ( ) ( )= + +

M

M
b a

j
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j

j
1 , 8drmax,

TOV
1

max

2

2
max

4

where the coefficients are found to be b1=0.30735(0.1964)
and b2=−0.10671(−0.04671) for cold(hot) stars, respec-
tively, for the differential rotation parameter a=0.2. For
comparison with previous works (Weih et al. 2018), in Figure 5
we show the maximum masses of differentially rotating
sequences M drmax, for differential rotation a=0.2, but this
time as a function of the normalized dimensional angular
momentum j j amax, for the mass-shedding limit of differentially
rotating stars. It is obvious that in this case, the maximum
masses at =j j amax, are higher, but the spread of the curves for
different EoSs is also larger.

We have just established that irrespective of the EoS, there
are two families of curves of hot (s= 2) and cold (T= 0) stars
for a differentially rotating star with a=0.2. We now
investigate whether this holds true for other values of
differential rotation a. In Figure 6, the maximum or TP masses
normalized to the corresponding TOV mass of differentially
rotating sequences for different degrees of differential rotation
a are plotted as a function of the normalized dimensionless
angular momentum j jmax,0 for one representative EoS, DD2,
for the two families T=0 and s=2. We find that curves in
the two families coincide for all the values of a considered
(0<a<1). This also holds true for the other EoSs considered
in this study (BHBΛf and DD2-K−). Therefore, the fit relation
proposed in Equation (8) also holds true for other values of a
independent of the EoSs considered in this work.
In order to determine the absolute maximum mass of a hot or

a cold differentially rotating star, one needs to compute
equilibrium configurations with increasing j until the mass-
shedding limit for each a is reached. If the fit relation of
j jamax, max,0 with a is known (see Figure 7), then one may
determine the absolute maximum mass using the universal fit
function in Equation (8). However, it is numerically very
challenging to generate Kepler sequences for large values of
differential rotation. In Figure 7, we could obtain mass-
shedding configurations up to differential rotation a=0.3 for
both hot and cold stars, but for higher a the uncertainties are
large. For the equilibrium configurations we could obtain (see
Figure 6), the maximum mass obtained was
M Mmax TOV = 1.23 (1.19) for the cold (hot) star. The value
corresponding to the cold star is lower than the value
1.54±0.05 obtained by Weih et al. (2018) and comparable
to the value of 1.2 from Bozzola et al. (2018).

3.3. Collapse Time of the Merger Remnant

The value of the total progenitor mass of the NS binary in
GW170817 is derived to be 2.74 Me. The mass of the remnant
of the BNS merger has been estimated to be ∼2.7–2.8 Me.
There are various possible outcomes of a NS merger that have
been conjectured (Ravi & Lasky 2014):

(i) a uniformly rotating stable NS (if the progenitor mass
MP�MTOV). If the EoS is stiff enough, this scenario
could be possible (Ai et al. 2018);

(ii) a uniformly rotating supramassive NS (if MP>MTOV).
In this case the remnant survives collapse as long as there
is enough centrifugal support from rotation;

Table 3
Turning Points for Zero-temperature DD2-K− EoS

DD2-K−, T = 0 (s=2kB)

J ρc MG fc rp/re Rcirc T/W

5.54(4.33) 9.65(9.59) 2.74(2.61) 1586.44(1356.46) 0.50(0.54) 16.94(18.15) 0.149 (0.109)
3.02 11.41(9.86) 2.40(2.44) 1307.14(1140.28) 0.77(0.75) 13.09(14.94) 0.075(0.07)
2.89 11.41(10.13) 2.39(2.42) 1273.24(1122.21) 0.79(0.77) 13.00(14.76) 0.070(0.066)
1.71 11.96(10.41) 2.26(2.30) 882.16(773.57) 0.90(0.90) 12.23(13.75) 0.031(0.029)
1.13 11.94(10.98) 2.21(2.25) 620.09(550.58) 0.95(0.95) 11.94(13.31) 0.015(0.014)

4.65(3.84) 10.13(9.60) 2.62(2.55) 1429.12(1210.26) 0.56(0.58) 16.08(17.79) 0.126(0.095)
0(0) 12.53(10.98) 2.17(2.21) 0(0) 1(1) 11.69(13.07) 0(0)

Note. The values in parentheses are for s=2kB (see text for details).

Figure 4. Maximum or TP mass normalized to TOV mass of differentially
rotating sequences for a degree of differential rotation (a=0.2) as a function
of normalized dimensionless angular momentum for different EoSs (see text for
details).
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(iii) a hot differentially rotating HMNS (if MP is greater than
the maximum mass supported by uniform rotation).

A dynamically unstable HMNS merger remnant may be
supported against collapse by the strong differential rotation

and thermal pressure. If the remnant is strongly magnetized
(protomagnetars with ~B 10 G15 ), differential rotation is
damped on the Alfvén timescale (100 ms). Subsequent
dissipation of the differential rotation and thermal energy by
neutrinos (on the neutrino cooling timescale ∼s) may result in a
collapse of the HMNS merger remnant to a black hole on a
timescale ;1 s, depending on the total mass, mass ratio, and
EoS of the NS binary. This may correspond to the 1.74 s delay
between the merger chirp signal and GRB170817A. The
collapse time of the remnant has important implications for
multimessenger astronomy (electromagnetic, GW, or neutrino
signal). The observation of the blue kilonova and La-rich ejecta
associated with GW170817 may indicate the formation of
HMNSs (Tong et al. 2018). In the future, GW observations
from the postmerger remnant with the third generation of
interferometers (LIGO India, Kagra, Einstein Telescope) might
help to constrain the EoS of merger remnants.
Numerical simulations indicate that the HMNS is formed

after the merger with a rapidly rotating highly nonaxisymmetric
bar-like structure (Gill et al. 2019). This should result in a time-
varying quadrupole moment, with strong emission of GW
dominating the spindown. Once the differential rotation is
damped, the HMNS may become a supramassive NS
configuration, with a spindown dominated by magnetic
braking. If the merger remnant is a supramassive NS, the large
rotational energy released in the isotropic MHD wind produces
a large spindown luminosity LSD>1042 erg s−1. But the
observed bolometric luminosity is lower than 1042 erg s−1 and
no afterglow emission has been seen. Hence the possibility of a
supramassive NS remnant may be ruled out. Thus the only
possibility to be considered would be that of a HMNS merger
remnant.
As we are interested in the stability of the HMNS merger

remnant, we would like to make an estimate of the collapse
time for the EoSs investigated in this work. However, the

Figure 5. Maximum or TP mass normalized to TOV mass of differentially
rotating sequences (a=0.2) as in Figure 4, angular momentum is, however,
normalized by the corresponding differential rotation value for different EoSs.

Figure 6. Maximum or TP mass normalized to TOV mass of differentially
rotating sequences for the DD2 EoS for different degrees of differential rotation
a as a function of normalized dimensionless angular momentum of uniformly
rotating stars (see text for details).

Figure 7. Ratio of normalized angular momenta for differentially rotating stars
to uniformly rotating stars as a function of differential rotation a for the DD2
EoS (see text for details) for hot stars (red circles) and cold stars (blue circles).
The fit to these curves is also shown.
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collapse time estimates and calculations that exist in the
literature vary widely in their formalism and predictions and are
far from reaching a consensus (Radice et al. 2018; Gill et al.
2019; Köppel et al. 2019; Lucca & Sagunski 2019). We follow
some of the recent suggested methods to obtain estimates of the
collapse time and the threshold mass for prompt collapse for
the EoSs considered in this work.

Assuming slow rotation and spindown of a possible
supramassive NS merger remnant via electromagnetic radia-
tion, (Lasky et al. 2014; Ravi & Lasky 2014) analytically
obtained estimates for collapse time using observations of short
gamma-ray bursts by Swift. However, as observational
evidence (Gill et al. 2019) now points to the fact that the
remnant of the merger GW170817 may be a rapidly
differentially rotating HMNS spinning down via gravitational
radiation rather than a supramassive NS, the validity of such
relations become questionable.

In the recent work of Köppel et al. (2019), collapse times
were computed using hydrodynamical simulations for five
zero-temperature EoSs, adding a “thermal contribution” via an
ideal-fluid EoS (Rezzolla & Zanotti 2013). But this approach of
a “hybrid EoS” is known to be non-self-consistent. Among the
EoSs considered were DD2 and fLBHB , which we have also
employed in this investigation for both zero temperature (s= 0)
and finite temperature (s=2kB). The calculation of threshold
mass Mth above which the merger remnant promptly collapses
to form a black hole was also explored in this work. Extending
a previously proposed linear EoS-independent universal
relation (Bauswein et al. 2013, 2017)

= +M M C3.38 2.43th TOV TOV

where the compactness CTOV=MTOV/RTOV, they suggested
the following nonlinear fit formula

= -
-

M a
b

c C1
,th

TOV

where b= 1.01, c= 1.34, and =
-

a b

c

2

2
, taking into account

the expected black hole limit M M 0th TOV for C 1 2TOV .
Recently, the results from simulations (see, e.g., Köppel

et al. 2019) and observations (e.g., Lasky et al. 2014; Ravi &
Lasky 2014) were combined to derive a radius-independent fit
relation between the initial mass of the single NSs MNS and the
collapse time tcoll (Lucca & Sagunski 2019):

⎛
⎝⎜

⎞
⎠⎟( ) ( )= +t e e

M

M
log log , 9coll 0 1

NS

TOV

where e0=−5.45±0.40 and e1=−38.9±1.7. The robust-
ness of such a relation was tested and proposed as a useful tool
to constrain NS EoSs (Lucca & Sagunski 2019). The BHBΛf
(s= 0) EoS was also one of the EoSs considered.

In order to compare with the results discussed above, we
consider the same values of initial data as in Köppel et al.
(2019), namely the initial masses MNS=1.53, 1.55, and 1.57
Msolar for the DD2 EoS and 1.62, 1.63 and 1.65 Msolar for the
BHBΛf EoS. Using the formula for Mth suggested in Köppel
et al. (2019), we calculated the threshold mass for prompt
collapse in units of MTOV. The results for the s=0 as well as
s=2 cases are summarized in Table 4. For comparison with
previous works, we also provide the maximum static mass
MTOV, corresponding radius RTOV, compactness CTOV, and the

freefall timescale

( )t
p

=
R

M2 2
. 10TOV

TOV
3

TOV

We then apply Equation (9) to calculate collapse times tcoll for
comparison with the results of Lucca & Sagunski (2019). The
estimated values of tcoll (taking only the mean values for the fit
coefficients e0 and e1) corresponding to the different MNS are
provided in Table 4.

4. Discussions

Since the detection of GWs from the NS binary merger event
GW170817, the fate of the binary remnant remains a mystery.
As no evidence of a remnant has yet been found from
postmerger searches by the LIGO–VIRGO Collaboration, one
may study the different possibilities theoretically. One likely
outcome of the merger is a metastable differentially rotating
HMNS. As the stability (dynamical and secular) and time of
subsequent collapse of the remnant depend on its rotation
profile and its interior composition, it opens up the possibility
to constrain the dense matter EoS using its stability analysis.
In this work, we explored the onset of secular instability for

different EoSs with and without strangeness. Using the TP
criterion, we investigated the maximum mass that may be
supported by differential rotation and thermal effects for the
different EoSs considered. We found that inclusion of thermal
effects reduced the maximum mass of the differentially rotating
configurations. This is interesting as the hypermassive remnant
is conjectured to be hot, and hence thermal effects cannot be
neglected. When studying the maximum mass supported by an
HMNS remnant, previous works considered cold stars or a very
restricted sets of EoSs, e.g., polytropic EoSs or only nucleonic
matter. With realistic EoSs including hyperonic and kaonic
degrees of freedom we investigated the influence of these new
degrees of freedom on the maximum supported mass.
We found that the maximum mass obtained depends both on

the EoS and the degree of differential rotation. In order to
calculate the highest possible value of the maximum mass, we
followed the method for obtaining a “universal relation”
proposed by Baiotti & Rezzolla (2017) for uniform rotation,
extended for the case of differential rotation by Bozzola et al.
(2018) and Weih et al. (2018). However for the EoSs
considered, we found the universal relation to be practically
independent of the EoS and the degree of differential rotation.
The highest mass obtained in our analysis was Mmax=1.23
MTOV for cold NSs and 1.19 MTOV for hot NSs.
We further investigated the effect of strangeness on the

collapse time of the merger remnant. We considered the
scenario in which the HMNS merger remnant rapidly loses
angular momentum due to loss of energy by GW emission and
collapses to a black hole before the Alfvén timescale, i.e.,
before the differential rotation is damped by magnetic
dissipation. This scenario is currently favored by the combined
multimessenger astrophysical observations (Gill et al. 2019).
We estimated the collapse time and threshold mass for prompt
collapse for the EoSs with and without strangeness, using
recently proposed fit formulas (Köppel et al. 2019; Lucca &
Sagunski 2019) obtained using observations of short gamma-
ray bursts (Lasky et al. 2014) and hydrodynamical simulations
(Köppel et al. 2019).

9

The Astrophysical Journal, 896:109 (10pp), 2020 June 20 Nunna, Banik, & Chatterjee



Postmerger multimessenger searches may be able to answer
the question about the fate of the merger remnant in
GW170817 by ruling out some of the proposed scenarios.
Future GW events from other NS mergers along with
multimessenger observations will provide further information
about the stability of NS merger remnants as well as the dense
matter EoS. An exciting journey in multimessenger astronomy
has only just begun.

D.C. would like to thank the warm hospitality of BITS Pilani
Hyderabad campus and Saha Institute of Nuclear Physics
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Table 4
The Estimated Values of tcoll (Taking Only the Mean Values for the Fit Coefficients e0 and e1) Corresponding to the Different MNS.

EoS MNS s MTOV RTOV CTOV tcoll τTOV Mth

(Msolar) (kB) (Msolar) (km) (ms) (μs) (MTOV)

DD2 1.62 0 2.41 11.86 0.30 18.2 80.2 1.37
1.63 14.29
1.65 8.89

DD2 1.62 2 2.418 12.72 0.28 20.72 88.9 1.44
1.63 16.31
1.65 10.15

BHBΛf 1.53 0 2.10 11.52 0.27 0.79 82.26 1.48
1.55 0.48
1.57 0.29

BHBΛf 1.53 2 2.127 12.5 0.25 1.31 92.36 1.54
1.55 0.79
1.57 0.48

Note. For each EoS, we provide the maximum static mass, corresponding radius, compactness, freefall timescale (Köppel et al. 2019), threshold mass for prompt
collapse (Köppel et al. 2019), and collapse time (Lucca & Sagunski 2019). See text for more details.
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