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Properties of rapidly rotating hot neutron stars with antikaon
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We consider a neutrino-free hot neutron star that contains antikaon condensates in its core and is at finite
entropy per baryon. We find the equation of state for a range of entropies and antikaon optical potentials
and generate the mass profile of static as well as rotating stars. Rotation induces many changes in the stellar
equilibrium, and hence its structural properties evolve. In this work, we report the effect of rotation on the
mass and shape of a hot neutron star for different equations of state and thermodynamic conditions. The
temperature profile of a hot, static neutron star is also explored. We also make a crude estimate of the amplitude
of gravitational waves emitted by an axisymmetric rotating NS with high magnetic field.
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I. INTRODUCTION

The matter inside the core of a neutron star (NS) is super-
dense. Here, the baryon number density (nb) can reach up to a
few times that of normal nuclear matter density (n0), which is
unlike anything found on earth. The behavior of matter up to
nuclear densities has been studied and is well documented by
numerous nuclear physics experiments. Lack of experimental
data at higher matter densities means we do not completely
understand the properties of matter at super nuclear densities.
Consequently, there exist huge uncertainties in understanding
the behavior of matter at high densities such as those present
in NS cores.

NSs are the nature’s laboratories for studying such highly
dense matter. One indirect way to study the properties of such
matter is by knowing the mass profile of a NS. The NS mass
is fairly established by many observational studies. The max-
imum masses observed till now are 1.928 ± 0.017 Msolar and
2.01 ± 0.04 Msolar for PSRs J1614-2230 and J0348+0432,
respectively [1–3]. Any cold equation of state (EoS) intending
to describe the matter inside the core of a NS must be able
to reach up to this level. This constraint in itself rules out
many of the proposed EoS for NS. Knowing mass alone is,
however, insufficient to rigidly pinpoint toward underlying
EoS and a knowledge of NS radius is very much required.
Further, there exist inherent uncertainties in the determination
of a NS radius observationally [4,5]. A quest to understand
the NS EoS is a wide open field of research at present and
provides an important link in comprehending the behavior of
matter at high densities.

The major constituents of matter with density just below
n0, are protons, neutrons, and leptons. The constituents of
higher-density matter remain uncertain to a large extent due
to the lack of experiments. As a result, the interactions be-
tween the constituents of such matter are poorly understood.
Many studies have theorized the appearance of hyperons at
higher matter densities [6–10]. It has also been suggested that

Bose-Einstein condensates such as those of pions and/or
antikaons are favorable to appear at highly dense NS cores
[11–13]. The appearance of new particles such as K− con-
densates results in the softening of EoS as negatively charged
leptons are replaced by the slow-moving massive condensates,
which do not contribute to pressure. The overall pressure thus
increases less steeply with density, thereby resulting in a softer
EoS. This, in effect, lowers the maximum mass reached by a
NS [13–15].

A NS is born in a core-collapse supernova (CCSN) explo-
sion, which is believed to be adiabatic, i.e., the entropy per
baryon (s) of each mass element remains constant during the
collapse except during the passage of the shock [16]. About
50 s after birth, the stellar interior becomes fully transparent
to the neutrinos [17]. Some processes, e.g., frictional dissipa-
tion of the rotational energy or Ohmic decay of the internal
magnetic field, may reheat stellar interior thus delaying the
cooling, especially at these late stages [18]. The exotic com-
position of the cores such as quarks or kaon/pion condensates,
affects the neutrino emission mechanism and hence its cooling
properties [18]. The higher the threshold density, the slower
will be the cooling of compact stars via kaon condensation
[19]. The temporal evolution of static protoneutron stars
(PNSs) has been thoroughly studied by Pons et al. [20]. In
this work, we are interested in studying a rotating NS that
is born in an adiabatic environment. We assume a range of
isentropic profile for the hot star. The maximum value of s

reached by a PNS can be 1 − 2kB [20], which may increase
to 5kB for a high mass progenitor [21] or merger of NS [22].
For simplicity, we have restricted ourselves to a deleptonized
star at constant s [23], so that neutrinos do not contribute to the
lepton number of the matter. We consider a hot star containing
exotic matter such as K− condensates and that is yet to cool
down to Fermi temperature.

Neutron stars are mostly observed in radio and are known
as pulsars (PSRs). Pulsar observation has come a long way
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since the first PSR was detected by Jocelyn Bell Burnell and
Antony Hewish in 1967 [24]. To date, more than 2500 PSRs
have been observed in our galaxy [25], out of which a large
fraction have time period between 0.1–10 s and are known as
ordinary PSRs. The millisecond pulsars (MSP) on the other
hand are part of binary systems and are rapidly spinning
stars that are powered by the flow of matter and momentum
from their companion stars. The 24 known accreting x-ray
ms PSRs (AXMSPs) have an average time period of ∼3 ms.
When x-ray emission ceases, these stars emit radio waves.
There are ∼300 recycled radio MSPs in our galaxy [26]. The
fastest known pulsar, PSR J1748-2446ad [27], has a rotation
period of 1.397 ms and a frequency of 716 Hz. In addition,
some young PSRs are also observed to be rotating with fast
velocities. For example, the Crab pulsar rotates once in 33 ms
and is known to emit giant radio pulses. The frequency of
a rotating star is limited by the mass-shedding phenomenon
only. At mass-shedding limit a rigidly rotating NS rotates
with maximum frequency possible, which is defined as its
Kepler frequency.

Soon after the CCSN explosion, the neutrino-trapped PNS
is expected to be rotating differentially due to lack of enough
viscous forces [28,29]. Differentially rotating stars can sup-
port significantly more mass in equilibrium than static or
rigidly rotating stars [30]. Keeping in mind the uncertainty
in initial rotational state of collapsing core, the actual degree
of nonuniformity in rotation of a PNS is unknown. As they
settle into β-equilibrium, viscosity dampens the differential
rotation. Apart from the slight differential rotation following
glitches, NSs are expected to rotate uniformly [31]. Here,
we have considered an idealized scenario of uniform and
rigid rotation about an axisymmetric axis, which represents
an approximation to the actual rotational state of a hot NS
[23]. In our calculations, we consider only neutrinoless hot
NS matter.

In general, the equilibrium of a rotating NS depends on
the rotational effects considerably. The mass-radius relation
for a static NS has been established theoretically by the
well-known Tolman-Oppenheimer-Volkoff (TOV) equations,
which give an upper bound to the mass of a static NS. The
internal structure of a NS changes as it rotates with higher
and higher frequencies. As the centrifugal force increases
with increase in rotational velocity, a rotating star can support
larger mass compared to a static one. The rotating stars also
tend to have larger radii [32]. This change is not only due
to the appearance of centrifugal force but also due to the
frame dragging of inertial reference frames [6,33]. However,
at finite temperature the pressure never really vanishes and
hence the surface of the NS cannot be determined definitely.
The maximum mass reached in a sequence is also a function of
the constituent composition as well as the temperature profile
inside a NS. In this paper, we restrict our discussions to the
mass and temperature of a NS.

We study the rotating NS sequences with EoS containing
exotic particles and having different entropies. These results
are compared with the corresponding static configurations and
also with the nucleon only matter configuration for a better
understanding. Further, we study the relativistic equilibrium
configurations of rotating hot NS with different EoS and ther-

modynamic conditions, in terms of their fluid energy density
profiles. We also study how they are affected by the change in
rotation frequency (or angular momentum) up to the Keplerian
limit. In the present work, we only consider NS after it has
deleptonized and wherein the rigid rotation has set in due to
viscosity, but is yet to cool down to Fermi temperatures.

We also make a rough estimate of gravitational wave
(GW) amplitude emitted by a NS having strong magnetic
field (B ). Most NS are the superdense remnants of supernova
explosions but some are formed in binary NS merger as well.
Some NS may have very high magnetic fields and are called
magnetars. The origin of high B in such NS is an open-ended
problem. Simulations show that a magnetar, which is formed
after the merger of binary NSs, is differentially rotating and
ultraspinning with typical periods of the order of a few ms
and magnetic field strengths in the range of B ∼ 1015–1016 G
[34]. The NS magnetic field (B ∼ 1012 G) is amplified by
several orders of magnitude (B � 2 × 1015 G) within the first
millisecond after merger [35]. The differential rotation can
further increase the field. Further, the long-term evolution
models have shown that the magnetic field can lead to a
uniformly rotating NS surrounded by an accretion disk and
with a collimated magnetic field [36]. On the other hand, ob-
servations have shown that the NSs that are relatively old have
strong magnetic fields, which are of the order of B ∼ 1011 G
to 1013.5 G, but much longer periods (P ∼ 1 s). Whereas,
millisecond radio pulsars have ultrafast rotation (P � 20 ms)
and much weaker magnetic fields (B � 1010 G) [37]. Since
we are interested in young and hot NSs, we take a typical
magnetar formed in a merger event for the estimation of GW
amplitude.

This paper is organized in the following way. In Secs. II A
and II B we describe our model EoS for a compact star. In
Sec. II C we discuss the rotation and axisymmetric deforma-
tion in such a star. Section III contains our results and the
related explanation. Finally, in Sec. IV we conclude with a
summary of results and further research work being done in
continuation. In this paper we have used natural units with
kB = 1 wherever required.

II. MODELS OF COMPACT STARS

A. Equation of state of core

We consider nuclear and K− condensed matter in the dense
interior of a NS and calculate the EoS within the framework of
relativistic mean-field (RMF) model with density-dependent
coefficients. The nucleons (N), denoted by spinors ψN , have
mass mN and interact through exchange particles σ , ω, and
ρ mesons. The density-dependent RMF model Lagrangian
density for the nucleons is given by [38],

LN =
∑
N

ψ̄N (iγμ∂μ − mN + gσNσ

− gωNγμωμ − gρNγμτN · ρμ)ψN

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

4
ωμνω

μν + 1

2
m2

ωωμωμ

− 1

4
ρμν · ρμν + 1

2
m2

ρ ρμ · ρμ. (1)
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Here, ωμν = ∂μων − ∂νωμ and ρμν = ∂μρν − ∂νρμ are the
field strength tensors for the vector mesons, and τN is the
isospin operator.

The meson-baryon couplings gαN (n̂)’s (α = σ, ω, and ρ)
depend on vector density n̂ = √

jμjμ, where jμ = �̄Nγμ�N .
The gαN (n̂)’s are Lorentz scalar functionals of baryon field
operators and are determined following the prescription of
Typel [39] and Typel et al. [40]. They reproduce the bulk prop-
erties of nuclear matter such as nuclear compressibility, sym-
metry energy, and its slope parameter at saturation density,
corresponding to the density dependence of symmetry energy
[38,41]. The details of the parameters used in this calculation
can be found in Char and Banik [38]. This parametrization
is known as DD2 formalism. In the mean-field approxi-
mation, the nucleon-meson couplings become a function of
total baryon density nb, i.e., 〈gαN (n̂)〉 = gαN (〈n̂〉) = gαN (n)
[40,42]. The density dependence of meson-baryon couplings
[42] gives rise to the rearrangement term �

(r )
N , the expression

for which can be written as,

�
(r )
N =

∑
N

[−g′
σNσns

N + g′
ωNω0nN + g′

ρNτ3Nρ03nN

]
. (2)

Here g′
αN = ∂gαN

∂nN
, α = σ, ω, ρ, and τ3N is the isospin projec-

tion of N = n, p. We compute the dense matter EoS of the NS
in the mean-field approximation, where the meson fields are
replaced by their expectation values. The timelike components
of vector fields and the isospin components of ρ fields survive
in a uniform matter. The mean fields are denoted by σ ,
ω0 and ρ03, where m2

σ σ = gσN (nS
n + nS

p ), m2
ωω0 = gωN (nn +

np ), and mρ
2ρ03 = 1

2gρN (np − nn); np, nn and nS
p, nS

n are the
number densities and scalar number densities of proton and
neutron, respectively. The number density of nucleon at finite
temperature is given by,

nN = 2
∫

d3k

(2π )3

(
1

eβ(E∗−νN ) + 1
− 1

eβ(E∗+νN ) + 1

)
. (3)

Here, β = 1/T and E∗ =
√

(k2 + m∗2
N ). Scalar density for

nucleons on the other hand is,

nS
N = 2

∫
d3k

(2π )3

m∗
N

E∗

(
1

eβ(E∗−νN ) + 1
+ 1

eβ(E∗+νN ) + 1

)
.

(4)

The Dirac equation for the interacting nucleons is given
by [γμ(i∂μ − �

μ(r )
N ) − m∗

N ]ψN = 0. The effective nucleon
mass is defined as m∗

N = mN − gσNσ . The chemical potential
for the nucleon is μN = νN + gωNω0 + gρNτ3Nρ03 + �

(r )
N ,

where νN =
√

k2 + m∗2
N . The pressure due to nucleons is

calculated as following [6],

PN = −1

2
m2

σ σ 2 + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + �

(r )
N

∑
N

nN

+ 2T
∑

N=n,p

∫
d3k

(2π )3

[
ln

(
1 + e−β(E∗−νN )

)

+ ln
(
1 + e−β(E∗+νN )

)]
. (5)

The explicit form of the energy density is given below,

εN = 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03

+ 2
∑

N=n,p

∫
d3k

(2π )3
E∗

×
(

1

eβ(E∗−νN ) + 1
+ 1

eβ(E∗+νN ) + 1

)
. (6)

The rearrangement term does not contribute to the energy
density explicitly. However, it occurs in the expression for
pressure through the baryon chemical potentials. It is the
rearrangement term that accounts for the energy-momentum
conservation and thermodynamic consistency of the system
[42–44].

We adopt the finite-temperature treatment of antikaon con-
densates as given in Pons et al. [13]. They had considered
three forms of Lagrangian. It was argued that the divergence
of constant vector fields is necessarily zero, making the
form given by Knorren-Prakash-Ellis (KPE) [45] sufficient
for the description of kaon sector [17] and we stick to that
choice. The antikaons are described by the Lagrangian density
LK = D∗

μK̄DμK − m∗2
K K̄K , where the covariant derivative

is Dμ = ∂μ + igωKωμ + igρKτK · ρμ [13–15]. The isospin
doublet for kaons is denoted by K ≡ (K+,K0) and that
for antikaons by K̄ ≡ (K−, K̄0). It is to be noted that the
antikaon-baryon couplings are density independent. The ef-
fective mass of the antikaons is given by m∗

K = mK − gσKσ ,
where mK is the bare kaon mass. The in-medium energy of
the K± mesons is given by,

ωK± =
√

(k2 + m∗
K ) ± (gωKω0 + gρKρ03). (7)

For s-wave (k = 0) condensation, the momentum depen-
dence vanishes in ωK± . The threshold condition for s-wave
K− condition is μK− = ωK− . The chemical equilibrium in
the reaction n ↔ p + K− sets the chemical potential of
K− as,

μK− = μn − μp = μe. (8)

The ωK+ never drops to meet the threshold condition of
ωK+ = μe. On the other hand, ωK− decreases from its
vacuum value mK with increasing density as the meson
fields grow and thus only K− condensates appear in the
system [17].

The net antikaon number density is given by, nK = nC
K +

nT
K , where, nC

K gives the K− condensate density. Here, nT
K

represents the thermal density and is given by,

nC
K = 2

(
ωK− + gωKω0 + 1

2gρKρ03
)
K̄K = 2m∗

KK̄K. (9)

nT
K =

∫
d3k

(2π )3

(
1

eβ(ωK− −μ) − 1
− 1

eβ(ωK+ +μ) − 1

)
. (10)

The condensates do not contribute to pressure, but implicitly
change the rearrangement term of Eq. (2) via the values
of meson fields. The energy density of K− condensates is

035801-3



BATRA, NUNNA, AND BANIK PHYSICAL REVIEW C 98, 035801 (2018)

given by,

εK = m∗
KnC

K +
(

gωKω0 + 1

2
gρKρ03

)
nT

K

+
∫

d3k

(2π )3

(
ωK−

eβ(ωK− −μK− ) − 1
+ ωK+

eβ(ωK+ +μK+ ) − 1

)
.

(11)

The first term in Eq. (11) is the contribution due to K−
condensate and second and third terms are the thermal con-
tributions to the energy density in εK .

In addition to nucleons and K− mesons, we also have lep-
tons in the system. They are treated as noninteracting particles
and the relevant physical variables for EoS, i.e., number densi-
ties, energy densities, and pressure are calculated following a
similar method as that used for nucleons, using the Lagrangian
density Ll = ∑

l ψ̄l (iγμ∂μ − ml )ψl. Here, ψl (l ≡ e, μ) de-
notes the lepton spinor. In a NS, when the electron chemical
potential μe becomes equal to the muon mass, the electrons
are converted to muons by e− → μ− + ν̄μ + νe. Therefore,
in a NS the onset of muons is determined by the condition
μe = μμ. The muons are usually ignored in hot dense matter
owing to their high rest mass (mμ ∼ 105.66 MeV/c2), which
suppresses their formation. However, at high temperatures
the electron chemical potential exceeds mμ leading to a
significant number of muons. Nevertheless, in our study, the
energetically favored antikaon condensates replace the leptons
as soon as they are formed. We have ignored the μ+S, as their
formation is highly suppressed. The total energy density in the
presence of K− condensates is therefore, ε = εN + εK + εl .

We generate the EoS at constant entropy per baryon (s).
The entropy density (SN ) of nucleons and leptons is related
to energy density and pressure through Gibbs-Duhem rela-
tion SN = β(εN + PN − ∑

i μini ), where, i = n, p, l. The
entropy density of antikaons is, SK = β(εK + PK − μK−nK ),
where, nK = nC

K + nT
K . The entropy per baryon is given by

s = S/nb, where nb is the total baryon density. The total
entropy per baryon has contribution from the nucleons, an-
tikaons, and leptons, i.e., s = (SN + SK + Sl )/nb.

B. Matching different parts of the EoS

Hempel and Schaffner-Bielich constructed the HS(DD2)
EoS for dense matter consisting of neutrons, protons, and
leptons. The low-density, inhomogeneous part of this EoS
was calculated in the extended nuclear statistical equilibrium
model (NSE) [46], which we use for our purpose. It consists
of nonuniform matter of light and heavy nuclei along with
unbound nucleons at low temperatures and densities that are
below nuclear saturation. Interaction among the unbound nu-
cleons are described by considering the same Lagrangian den-
sity as in Eq. (1) and using the density-dependent formalism
[40,46]. As the K− condensates appear only at high densities
and at relatively high temperatures, the nuclei and exotic
matter are never found to coexist. Therefore, we simply use
the nonuniform part of the HS(DD2) EoS [46,47] following
the standard prescription of minimization of free energy as
is given in Banik et al. [47]. Although the above procedure
allows for a smooth transition between the different parts of

EoS at around nuclear saturation density, it is of course not
completely consistent as was emphasized in Marques et al.
[10]. Recently, Fortin et al. [48] have shown that the core-crust
matching does not have any effect on the maximum mass
allowed for the star, but the uncertainty in radius calculations
can be ≈4% depending on the way core-crust matching is
done. Since our emphasis is not on the calculation of radii
of stars, this uncertainty does not affect our overall results.
However, this EoS table [47] is for supernovas for a wide
range of temperature, baryon number density, and electron
fraction. For NS matter, we impose an additional condition of
β equilibrium on the chemical potentials, μn − μp = μe. For
a given temperature and nb, the electron fraction is determined
by finding the zero of the function f (Ye ) = μe(Ye ) at a fixed
value of s [49], where Ye is the electron fraction and μe is
given by Eq. (8).

C. Rotation and axisymmetric deformation of a NS

To compute and compare the hydrostatic equilibrium con-
figurations of rotating NS with DD2 EoS as described above,
we use NROTSTAR code of the numerical library LORENE

[50], which implements the multidomain spectral method for
calculating accurate models of rotating NS in full general
relativity [51].

In this formalism, field equations are derived using 3+1
formulation. This forms a system of four elliptic partial dif-
ferential equations, which are then solved numerically using
the self-consistent field method. While solving, the space
time is assumed to be asymptotically flat and axisymmetric.
Under these simplified assumptions of space time, the metric
function can be written as,

gαβdxαdxβ = −N2dt2 + A2(dr2 + r2dθ2)

+B2r2sin2θ (dφ − wdt )2. (12)

Here, N,A,B, and w are functions of (r , θ ). The accuracy
of the solutions obtained using NROTSTAR is checked using
the general relativistic virial theorem GRV3 and GRV2 [52],
which gives a typical value of ≈10−4.

LORENE/NROTSTAR is formulated primarily for cold EoS,
or a barotropic EoS [23]. Our EoS are temperature dependent
but are formulated so as to have constant entropy per baryon.
This results in a homoentropic flow, thereby making the EoS
barotropic. Thus as long as we have an EoS that is isentropic,
LORENE formalism can be used to do the calculations.

Using LORENE/NROTSTAR, we compute stable NS configu-
rations for different EoS as described in the previous section.
We measure the change in mass profile of a NS as it rotates
with different angular momenta. Finally, we make an estimate
of the strength of GW, that can be emitted from a uniformly
rotating NS whose magnetic field axis is not aligned with its
rotation axis.

III. RESULTS

We have generated a number of isentropic EoS profiles
and calculated the properties of a reasonably rapidly rotating
and deleptonized NS using the DD2 model. We consider a
nucleons-only system consisting of protons (p), neutrons (n),
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FIG. 1. (a) The EoS with pressure plotted against number density
for np and npK (UK̄ = −100 MeV) for a NS core at zero temperature
state (T = 0 MeV) and at adiabatic state (entropy per baryon s = 1,
4, and 5). (b) The mass sequences against number densities for the
np and npK (UK̄ = −100 MeV) EoS, for total entropy S = 0, 3, 5,
and 7 Msolar . The dashed lines are for np matter and solid lines are
for npK matter for UK̄ = −100 MeV in both the panels.

and leptons (l) and denote it by “np”. When the matter consists
of antikaon condensates (K−) and thermal kaons (KT ), it
is denoted by “npK”. The potential depth of antikaons in
saturated nuclear matter is given by, UK̄ = −gσKσ + gωKω0.
The study of kaonic atoms suggests an attractive optical
potential for the antikaons. The value of UK̄ at n0 has been
calculated in a coupled-channel model and chiral analysis of
K− atomic and scattering data. However, to date, no definite
consensus exists regarding the value of UK̄ [42,53]. For our
calculations, we have chosen a wide range for UK̄ , from a
shallow value of −60 MeV to a deeper one of −150 MeV
[42]. The coupling constants for kaons at saturation density
for different values of UK̄ in the DD2 model are listed in
Table 1 of Char and Banik [38].

In the left panel of Fig. 1, we plot pressure vs. baryon
number density or the EoS profile for np and npK matter
(UK̄ = −100 MeV) for different s values. We notice that the
set of npK EoS is softer compared to that of np matter.
As we go from np to npK matter, leptons in the NS core
are gradually replaced first by thermal kaons and later by
antikaon condensates also as the core density increases. These
condensates do not contribute to the pressure term but they do
contribute to the net negative charge in the system and hence
the overall EoS becomes softer.

We also compare the hot NS EoS having different s values
(1, 4, and 5) with EoS for cold NS matter (T = 0 MeV). In
general, for a given composition, the EoS is softer for a NS
with lower s. This matches with the previous results for other
model EoS [17]. At a given density, higher s matter has higher
chemical potential and hence higher pressure, as is evident
from the Gibbs-Duhem relation. We further notice that the
EoS profiles for s = 1 NS matter is only slightly different than
that for cold NS matter for np, but this difference between the
two EoS is more evident for npK composition. The np EoS

is slightly stiffer for matter at s = 1 than for matter at zero
temperature, as expected, because kinetic pressure increases
due to increase in temperature, but the potential pressure
term remains the same. In contrast, for npK, s = 1 EoS is
comparatively softer than zero-temperature EoS, especially at
higher densities (nb � 0.7).

For cold NS matter,the npK EoS, which was initially
following np EoS, bends at the density point when antikaon
condensates start appearing at nb ≈ 0.5. Since there are no
thermal kaons present at T = 0 MeV, it is only the presence
of antikaon condensates, which contributes to the softening of
EoS. For s = 1 NS, the npK EoS follows the corresponding
np EoS until thermal kaons enter, at which point the slope of
the EoS curve changes slightly due to reduction in pressure.
Further when the antikaon condensates appear at later density,
the curve bends again further softening the EoS. The fraction
of antikaon condensates becomes more than that of thermal
kaons at about nb ∼ 0.62 and soon after we see EoS becoming
so soft that T = 0 MeV EoS becomes stiffer than s = 1
EoS.

If we look at the expression for pressure in Eq. (5), con-
tribution of the first three terms, i.e., the potential terms, is
more for a low s NS matter. Even though with the rise in
temperature, the contribution of the kinetic terms increases,
it dominates only at sufficiently high s values (s � 2) where
thermal kaons play a significant role. In contrast, the contribu-
tion of potential terms decreases with an increase in s value.
This decrease is maximum for low s NS and minimum for
high s NS. This is because in a high-s NS, the thermal kaons
appear at lower density and their fraction in the system is also
relatively high compared to a NS at lower s; as will be seen
in Figs. 4 and 5. On the other hand the fraction of K− is
lower for a higher-s NS and they appear at higher densities
only. In addition, the kinetic increase in pressure is also there
due to high temperatures, so the overall EoS for high-s NS is
stiffer than for a cold star. This, however, may become softer
at higher densities where KT overtakes K− as was seen for
the case of s = 1 earlier. In general, we can say that a cold
EoS, which is initially softer than a higher-s EoS, may become
stiffer at very high densities.

The EoS profile obeyed by a NS is reflected in its mass-
density profile. We next study NS gravitational mass se-
quences for static as well as rotating stars obeying different
EoS. To get mass profiles of a static NS, we solve TOV
equations for the same, with our sets of EoS. For the cold NS,
the maximum masses of about 2.417 Msolar and 2.372 Msolar

can be attained for np and npK matter, respectively, after
which the star becomes unstable as the slope, dMG

dnb
, becomes

negative. For hot, nonrotating stars, Goussard et al. [23], based
on the earlier papers [54,55], have shown that a stable config-
uration can be distinguished from the unstable one following
the gravitational mass sequences at constant total entropy
S = s ∗ MB , instead of constant s. We use this criterion to
find mass sequences for np and npK (UK̄ = −100 MeV) EoS
and plot gravitational mass-number density (MG − nb) profile
for different entropy values in the right panel of Fig. 1. The
plotted sequences are for S of 0, 3, 5, and 7 Msolar NS.

The sequence for a S = 3 Msolar corresponds to NS con-
figurations with an s between 1 (for the higher MG end of
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TABLE I. Maximum mass reached for different np and npK
EoS and the corresponding central number density at constant total
entropy values of 0, 3, and 7 Msolar . The first row is for np EoS with
no antikaon contribution and the rest five rows are for npK EoS at
different antikaon optical potentials.

UK̄ S = 0 Msolar S = 3 Msolar S = 7 Msolar

Mmax nb Mmax nb Mmax nb

MeV (Msolar) (fm−3) (Msolar) (fm−3) (Msolar) (fm−3)
np 2.417 0.851 2.416 0.829 2.437 0.740
npK −60 2.372 0.822 2.376 0.792 2.386 0.718

−80 2.339 0.823 2.341 0.799 2.369 0.727
−100 2.297 0.833 2.296 0.8 2.346 0.729
−120 2.242 0.862 2.237 0.825 2.315 0.731
−140 2.176 0.914 2.164 0.841 2.275 0.716
−150 2.142 0.95 2.125 0.912 2.251 0.722

the sequence) and 2 (for lower MG end). The maximum mass
reached corresponds roughly to a NS at s ∼ 1.1. Since the
configurations at higher end are lower in s, we see very
minor difference there between a cold NS sequence and a
NS sequence at S = 3 Msolar, essentially reflecting the EoS
nature, where we saw hardly any difference between cold
EoS and s = 1 EoS. The higher S sequences of 5 and 7
Msolar correspond respectively to an s of (1.8–3.8) and (2.5–5),
respectively, where the values inside parentheses correspond
to higher and lower end of the sequence. These sequences are
sharply different from the corresponding cold NS sequence,
as the thermal effects are more dominant here. A high total
entropy can sustain a higher gravitational mass as is evident
from the figure. For a given constant S, we get gravitational
mass values until a limiting s is reached, beyond which the
sequence possibly enters the instability region. The maximum
stable mass reached in a sequence as a result and the corre-
sponding central number density for given S of 0, 3, and 7
Msolar, are listed in Table I for np and npK EoS with different
UK̄ . We observe that colder stars have a denser core than
finite-temperature NSs. The central density further decreases
as the entropy of a star increases. We see that, e.g., for a NS
with UK̄ = −100 MeV, the mass increases from 2.297 Msolar

for cold NS to 2.346 Msolar for a NS at S = 7 Msolar, whereas
its central density decreases from 0.833 fm−3 to 0.729 fm−3.
We refrain from quoting radius values for finite-temperature
stars as the surface pressure never really goes to zero.

FIG. 2. The EoS is plotted for a range of values of UK̄ =
−60 MeV to −150 MeV (a) for lower s = 1 and (b) for higher s = 4.
In both the plots np EoS is also included as the dashed line for
comparison.

We next study the EoS profiles of hot NS having different
UK̄ values. In Fig. 2, we compare np and npK EoS profiles for
two different values of s: 1 and 4. The npK lines are plotted
for a range of UK̄ from −60 MeV to −150 MeV for K−
condensates in a nuclear medium. We notice that as soon as
the thermal kaons enter the system, the slope of corresponding
EoS changes. The EoS gets further softened at higher densities
when the antikaon condensates appear. The densities at which
the thermal kaons and the condensates appear in the NS core,
for different UK̄ values, are listed in Table II. For a given value
of UK̄ , K− condensates appear at lower density for a cold
NS whereas their appearance is delayed to higher densities
for hot NS. Thermal kaons are not present in cold NS. For
finite temperature NS, not only the KT ’s appear much earlier
than K− but for higher s they appear at lower densities. The
condensates do not appear in the system even at very high
densities (nb ∼ 1.3 fm−3) for a high s (∼5) NS, unless the
optical potential is deep enough, |UK̄ | � 100 MeV. Hence,
in a NS core, an increase in s delays the K− onset in the
system but advances the onset on KT , thereby making the
EoS stiffer. It is to be noted that np EoS is the stiffest among
all considered here because neither K− nor KT exist in the
system ever. In contrast, for a NS at given s, as the depth of

TABLE II. The value of baryon density (nb) in fm−3 when KT and K− condensate start appearing in the NS core. They are for different
values of UK̄ and also for different thermodynamic states inside the NS core.

UK̄ T = 0 s = 1 s = 2 s = 3 s = 4 s = 5

MeV MeV K− KT K− KT K− KT K− KT K− KT K−

−60 0.613 0.427 0.687 0.282 0.868 0.191 1.129 0.131 1.396 0.092
−80 0.558 0.393 0.622 0.264 0.777 0.18 1.006 0.125 1.245 0.089
−100 0.507 0.362 0.559 0.246 0.690 0.171 0.889 0.121 1.097 0.089 1.312
−120 0.459 0.334 0.502 0.231 0.608 0.162 0.777 0.115 0.957 0.089 1.126
−140 0.416 0.308 0.449 0.218 0.535 0.155 0.674 0.11 0.828 0.089 0.969
−150 0.395 0.297 0.425 0.21 0.449 0.15 0.626 0.109 0.765 0.089 0.896
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FIG. 3. The mass-number density profiles for EoS with np and
npK matter at different optical potentials at for (a) S = 3 Msolar and
(b) S = 7 Msolar .

optical potential increases, the condensates as well as thermal
kaons start populating the core earlier, thereby making the
corresponding EoS softer.

Next, we study the NS mass sequences at constant S for
np and npK EoS. The MG − nB profiles are compared in
Fig. 3 for constant total entropy of 3 Msolar and 7 Msolar in
the two panels, which roughly translates to an s of ≈1.1 and
2.7, respectively, for the higher MG end of a sequence. As
before, nature of the EoS is reflected in the corresponding
mass profile. For the same thermodynamic condition, a softer
EoS (deeper UK̄ ) makes a lower maximum mass star, The
maximum masses reached by NS obeying a given EoS are
listed in Table 1. This trend matches with earlier results
[13,15], however, the maximum mass values for cold NS are
much higher and well above the observational constraint of
2 Msolar [1–3].

We next study the fraction of particles present in the NS
core for EoS with different values of UK̄ and s. At low den-
sities, the NS contains n, p, e, and μ. As higher densities are
reached in a NS core, the threshold condition; μK− = μn −
μp = μe is satisfied and K− appears in the system. The lepton
fraction falls off as soon as the negatively charged condensates
populate. The Bose-Einstein condensates do not contribute to
the pressure and it is energetically favorable to have them in
the system as compared to the leptons. We compare particle
fractions in a hot NS with shallower UK̄ = −60 MeV, for an
s value of 1 and 4 in the two panels of Fig. 4. Interestingly,
in a low-s NS core, as soon as K− condensates appear, they
quickly outnumber the already existing thermal kaons KT . On
the other hand, in a higher-s NS, the negatively charged KT

appear at relatively lower density, pushing the onset of K−
condensates to much higher nb values. KT was also noted
to partially inhibit the appearance of the K− condensates in
Pons et al. [13]. In Fig. 5, the particle fraction is plotted for
a deeper UK̄ = −150 MeV. A similar trend is noticed here
as well. However, here the K− populates at lower densities
compared to NS with shallower EoS. The threshold densities

FIG. 4. Fraction of different particles in a β-equilibrated NS
matter with n, p, e, μ, and antikaon condensates of K− and KT ;
for UK̄ = −60 MeV; plotted as a function of the baryon density for
(a) s = 1 and (b) s = 4.

for onset of KT as well as for K− condensation for different
s and UK̄ values were listed earlier in Table II.

Next we study the relation between temperature and num-
ber density (T vs. nb) in a NS obeying different EoSs. We
plot T vs. nb in the two panels of Fig. 6 for a NS with an s
of 1 and 4, respectively. In each panel, we compare np with
npK matter at shallow and deep optical potentials. For a fixed
s, the temperature increases with increase in baryon density.
In other words, the temperature falls off from the core of a
NS to its surface. This nature of temperature curve was earlier
reported in Banik et al. [56] as well. At a given s, temperature
is nearly the same at low densities for different EoS, but in the
high-density region prominent difference can be seen between
them, which occurs because the thermal kaons and antikaon
condensates start to populate the matter at these densities. We
notice kinks in the npK lines, which mark the appearance of
K− condensates. For an isentropic NS with a high s of 4, the
temperature can rise up to 150 MeV compared to 50 MeV
for a star with low s of 1. Also, in a lower s NS, the core
temperature is less for np matter as compared to that for npK
matter.

FIG. 5. Particle fractions vs baryon number density as in Fig 4,
but for a deeper UK̄ = −150 MeV for (a) s = 1 and (b) s = 4.
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FIG. 6. Temperature in a NS is plotted as a function of baryon
density nb, for a given thermodynamic state, (a) s = 1 and (b) s = 4.

For a lower s NS, the antikaons not only appear at lower
density, their fraction is higher for deeper potential EoS. Thus
the core temperature rises for npK EoS with UK̄ = −150
MeV, than for that of np EoS or npK EoS at UK̄ = −60 MeV.
For npK at UK̄ = −60 MeV and s = 1, leptons depletion
starts at the onset of thermal kaons (at nb = 0.427 fm−3) and
the temperature curve of npK is lower than that for np EoS.
The lepton depletion is accelerated when condensates appear
(at nb = 0.687 fm−3) and the temperature curve surpasses
that for np. For a higher-s star the nature of temperature
curve is quite the opposite. Here, the core temperature of
NS with np EoS is higher than that of npK. At higher s, the
K− condensates appear at very high densities (see Table II).
Similar behavior is noted when additional fermionic degrees
of freedom, such as hyperons are involved. In the absence of
any variation of hyperon effective mass, it was shown that at
a given baryon density a system with more components has
lower temperature [20].

Having discussed the properties of a static NS with np
and npK EoS, we now study the rotating NS configurations
usingLORENE/NROTSTAR. We certainly do not claim to give
a completely realistic picture of a NS. This simplified pic-
ture of uniformly rotating isentropic, neutrinoless star at β
equilibrium is sufficient for the purpose of present work,
which is to study the influence of antikaon condensates on
the properties of hot, rotating NS. A more complete study of
neutrino-trapped PNS with our density-dependent EoS is left
for future work. Keeping in consideration the observational
pulsar frequency data, we study the change in the NS config-
uration for different angular momentum values.

Figure 7 shows the evolution of gravitational mass-number
density relation of a NS with change in its angular momentum.
We plot the MG − nb profiles of a NS for different angular
momentum values (J = 0, 1 and 2 GM2

solar/c). The mass
sequences for EoS with npK for a moderate optical potential
(UK̄ = −100 MeV) plotted in the two panels are for a NS with
an S of 3 and 7 Msolar, respectively. We see that a rotating
star can support more mass compared to a static one. As
the angular momentum changes from 0 to 1 GM2

solar/c, the
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FIG. 7. The evolution of mass with rotation for a NS with npK
(UK̄ = −100 MeV) and at (a) S = 3 Msolar and (b) S = 7 Msolar .
The sequences are plotted for NS rotating with different angular
momenta starting from J = 0 (static case) to J = 1 GM2

solar/c and
2 GM2

solar/c.

corresponding increase in MG is not very significant. How-
ever, the relative change in MG for a NS with J ∼
1 GM2

solar/c to 2 GM2
solar/c is significant, as is evident from

both the panels of Fig. 7. The star with total entropy 7 Msolar

can support a maximum mass star which is more massive than
that with total entropy 3 Msolar. The difference is independent
of its angular momentum. However, we notice that the relative
increase in NS mass from a lower J to higher J state is higher
for a NS with lower S. The percent increase in NS mass
was about 4.5 for S = 3 NS sequence as we go from non
rotating state to J ∼ 2 GM2

solar/c state, whereas it was only
3.85 percent for S = 7 NS for the same change in angular
momentum state.

We next study the change in shape of a NS for an increase
in s and for a change in its angular momentum. In Fig. 8
we compare a NS rotating at 300 Hz for two extreme npK
EoS (with shallower UK̄ = −60 MeV and with deeper UK̄ =
−150 MeV). The isocontours lines drawn are of constant fluid
energy density in the meridional plane, φ = 0. The vertical
direction (y) is aligned with the stellar angular momentum.
The thick solid line marks the stellar surface. The coordinates
(x, z) are defined by x = rsinθ and z = rcosθ , where θ is
the polar angle. They represent the coordinate radii in x and
z directions. The top slice of the Fig. 8 is for a NS with
shallower EoS and bottom slice for EoS with deeper potential.
Both NSs are at a constant s of 1 and have same baryon mass
of 2 Msolar. As we can see from the figure, a deeper potential
tends to make the NS more compact. Further, in both the
cases, the NS are nearly spherically symmetric with the ratio
of polar to equatorial radius ≈0.97. Figure 9 gives contour
plots for a NS with same EoSs (with shallower and deeper
UK̄ ) as in the previous figure but with a higher s of 4. We
notice that at higher s the NS becomes bulkier, its size being
almost double to that of a star with an s of 1. We also notice
a slight deviation from the spherical shape for higher s star
with the ratio of polar to equatorial radius now ≈0.7. Thus,
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FIG. 8. Energy density iso-contours of a rotating NS with baryon
mass of 2 Msolar . Top (bottom) panel shows static NS with EoS for
UK̄ = −60(−150) MeV, with s = 1.

we conclude that the shape of a NS depends on its EoS and
thermodynamic state. A NS with lower s has a denser core and
is more compact. Hence a higher-s star, which is less compact,
deforms more when subjected to rotation as it gets bulged in
the equatorial plane and is flattened in the vertical direction,
which incidentally is also the direction of the stellar angular
momentum.

Next we study the effect of rotation on a particular NS
configuration. The top slice of Fig. 10 shows a NS with
npK matter at deeper potential and low s (UK̄ = −150 MeV,
s = 1. The NS is rotating slowly at 11 Hz and has an angular
momentum J ∼ 0.02 GM2

solar/c. NS shown in bottom slice
rotates slightly faster at 280 Hz and has J ∼ 0.5 GM2

solar/c.

FIG. 9. Energy density iso-contours of a rotating NS as in Fig. 8,
but with higher entropy per baryon state s = 4

FIG. 10. Effect of rotation on NS shape. Energy density iso-
contours for a NS with npK (UK̄ = −150 MeV, s = 1) rotating at
J = 0.02 GM2

solar/c (top) and 0.5 GM2
solar/c (bottom).

Figure 11 has the same NS with J ≈ 1.8 (top slice) and
2.23 M2

solar/c (bottom slice) and rotating with a frequency of
830 Hz and 930 Hz (Keplerian), respectively. The NS is fairly
spherical at low angular momenta, but gets deformed at higher
J . At Keplerian frequency, the NS becomes elongated in an
effort to keep itself from falling apart. Thus the rigid rotation
of a NS changes its shape as well as its equatorial radius. In
the final contour plot of Fig. 12 we check the deformation
of the star with npK EoS at higher s of 4. We compare a
slowly rotating star having J = 0.02 GM2

solar/c with a fast
rotating star having J = 1.8 GM2

solar/c. We observe the same
pattern of deformation in shape at higher angular momentum
as was noted for Figs. 10 and 11. However, the deviation from
spherical symmetry is much more pronounced in this case.
This can again be attributed to the lower density of the core
for a higher-s NS.

FIG. 11. Energy density isocontours for a NS as in Fig. 10
rotating at J = 1.8 GM2

solar/c (top) and 2.23 GM2
solar/c (bottom).
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FIG. 12. Fluid energy density isocontours for NS (UK̄ =
−150 MeV, s = 4) rotating at J = 0.02 GM2

solar/c (top) and at
J = 1.8 GM2

solar/c (bottom).

In a NS, the deviation from spherical symmetry due to
the anisotropy of energy-momentum tensor in the presence of
strong magnetic fields has been reported by several authors.
It has also been shown that the inclusion of magnetic field
effects in the EoS and the interaction between the magnetic
field and matter (or magnetization) does not affect the stellar
structure considerably [57,58]. Without considering the mag-
netic field effects in our EoS, we made an order estimation for
the GW emitted due to nonaxisymmetric deformation or the
ellipticity in a magnetized NS with baryon mass 2 Msolar.

We consider a typical NS with dipolar magnetic field
that is uniform inside the star. For an estimation of GW
amplitude, we assume that the magnetic and rotational axes
are not aligned. Also, the star is assumed to be rotating
at a frequency of 200 Hz, which is much lower than its
mass-shedding limit, such that the deformation is primarily
due to the strong magnetic field. Further, we assume that
the magnetic energy is much less than the rotational kinetic
energy as it is considered to be a realistic case. The NS then
becomes a triaxial ellipsoid and emits GW as a result [59].
With this, a numerical estimate of the GW amplitude can be
made using the following relation [59]:

h0 = 4.21 × 10−24

[
ms

P

]2[
kpc

D

][
I

1038 kg m2

][
ε

10−6

]
.

(13)

Here, P is the rotation period of the NS, D is the distance
to the NS, I is its moment of inertia with respect to its
rotation axis, and ε characterizes the ellipticity of the NS
due to magnetic-field-induced distortion. For a NS with polar
magnetic field Bpole, the ellipticity is given by [59]

ε = 45

64π

B2
pole

μ0Gρ2R2
. (14)

To make an order of magnitude estimate, we consider a typical
magnetar formed in a binary merger event that is at a distance

of D = 40 Mpc [60]. We assume that the NS has a polar
magnetic field, B = 1015 G. Using Eqs. (13) and (14) we
then obtain a GW amplitude h0 ∼ 9.3 × 10−30 for a cold NS
(T = 0 MeV). It increases marginally to 1.09 × 10−29 for hot
NS with s = 1 and 4.18 × 10−27 for NS with s = 4. Since
all the above calculations assume the same B, the difference
in GW amplitude is due to the thermal effect on EoS only.
The GW emission from such a NS occurs at frequencies of
f and 2f (where f is the rotation frequency of the NS). The
strength of the two components is determined by the angle
α between the distortion axis (axis of magnetic-field-induced
distortion) and the rotation axis of the NS. For small α, f
is the dominant component and for large α, 2f component
dominates [59]. For our case, the GWs from the distorted
NS will be emitted at 200 Hz and 400 Hz, with the relative
strength of each component being determined by the angle α.

From the sensitivity curve of the present-day detectors
[61], it can be seen that the possibility of detecting a GW
of this amplitude is severely limited. VIRGO and aLIGO, for
example, have the range from about 10 Hz to a few kHz and
the characteristic strain window of ∼10−22 to few times 10−24.
The next generation of ground-based interferometers such as
the Einstein Telescope are predicted to have a sensitivity that
will bring down the characteristic strain down to about a few
times 10−25 [61]. Our calculations assume a rigidly rotating
NS that is made of incompressible fluid and that has a uniform
magnetic field inside the star. Relaxing these assumptions
may lead to a greater value of ellipticity and hence a higher
GW amplitude, which will have a high probability of being
detected by the future generation of GW interferometers.

On the other hand, many studies of CCSN simulations of
PNS evolution have shown that during the early phase of PNS
evolution after core collapse, the GWs are emitted via quasi-
normal modes and are expected to have frequencies of about
a kHz and amplitude that lies well within the range of ground-
based detectors [62–65]. Also, many multidimensional CCSN
simulations [66,67] have shown g modes as an important
imprint of PNS oscillations in the early stages after bounce.
The GW emitted as a result are expected to be about a few
hundred Hz in frequency [68] having amplitude that should
be in the grasp of current and upcoming GW observatories.
However, CCSN explosion is a rare event, for example, in
our galaxy it happens at the rate of about two to three times
per century. It has also been shown by numerical simulations
that short-lived but supramassive neutron stars can be formed
by the coalescence of low-compactness NSs of nearly equal
mass [69]. These rapidly rotating and highly nonaxisymmetric
products of merger are supported by differential rotation and
would emit quasiperiodic GW with typical frequencies of
about 2–3 kHz with substantially higher amplitude [70,71].
Simulations have shown that up to 0.01 Msolar could be radi-
ated in GW via this mechanism [63]. We intend to study these
scenarios in the future.

IV. CONCLUSIONS

In the present paper we studied the set of NS EoS that
contain thermal kaons (KT ) and K− condensates in its
core. This is done within the framework of the relativistic
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mean-field theoretical model with density-dependent cou-
plings. We also compare these EoS with nucleon-only EoS.
All of these have been studied for a set of constant-s NSs. The
finite-s NS is then compared with NSs at zero temperature.

The EoS with exotic matter tends to be softer as compared
to np EoS. Moreover, among the npK EoS with antikaon
condensates at different UK̄ , the EoS with deeper potential
makes K− condensates appear at lower densities in the core
than that for a shallower UK̄ , thereby resulting in softer
EoS for matter at deeper optical potential. In general, the
npK EoS also appears to stiffen as the entropy per baryon
of a NS core increases. Our static results are qualitatively
consistent with earlier work of Pons et al., where the EoS of
kaon-condensed matter including the effects of temperature
and trapped neutrinos were thoroughly studied [13]. The set
of cold EoS we studied, however, falls within the required
observational limit of 2-Msolar star, unlike theirs.

We also studied the fraction of various particles in a NS
core obeying a given EoS and noticed that the fraction of
thermal kaons increases with an increase in s but decreases
slightly with an increase in potential depth, whereas the frac-
tion of antikaon condensates decreases with s but increases
with an increase in the depth of antikaon optical potential.

We next studied the mass sequences for NS at con-
stant total entropy S and found that the EoS behavior is
closely reflected in these mass sequences. It was observed
that maximum mass of a NS sequence increases with an
increase in S. In contrast, the maximum mass attained in
a sequence decreases as the depth of optical potential in-
creases. We next studied the evolution of the mass-number
density relation with various angular momenta for different
EoS. The maximum mass of a given sequence was found
to increase with an increase in the corresponding angular
momentum.

We also observed the fall of temperature from the core to
the surface of a NS. The core and the surface temperature
depend on the EoS and the thermodynamic state of matter. or
low s, the temperature in NS rises in the presence of antikaons.
However, the temperature is more for np matter compared to

npK matter for higher s NS. In the presence of other exotic
fermions, such as hyperons, this trend was reported in earlier
work [20] as well.

Further, we studied the effect of rotation on the equilibrium
structure of a NS in the form of isocontours of its fluid energy
density. A NS obeying an exotic EoS with deeper potential
tends to be more compact as compared to a NS with an EoS
with shallow UK̄ . In both the cases, we find that at low J ,
a NS tends to be nearly spherically symmetric but starts to
deviate from spherical symmetry as its J increases. The NS
deforms considerably as its reaches the Keplerian limit. The
deformation was found to be more for a higher s NS. Also,
a higher-s star has less dense core and thus bulges more in
the equatorial plane when subjected to fast rotation along the
polar axis.

Finally, we made a crude estimate of the GW amplitude for
a highly magnetized NS whose magnetic axis is not aligned
with its rotation axis. The GW amplitude for a hot NS with
high s was found to be considerably larger than that for a cold
NS. Still its strength is not large enough to come in the range
of the present-day detectors, but might just come within the
grasp of next generation of GW observatories.

Results of differentially rotating configurations of NS and
the limits of GW emission as a result of the instabilities
triggered by mass-shedding limit as well as strong magnetic
fields will be reported subsequently.
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